ISE's Common Control System

International Submarine Engineering (ISE) Ltd.

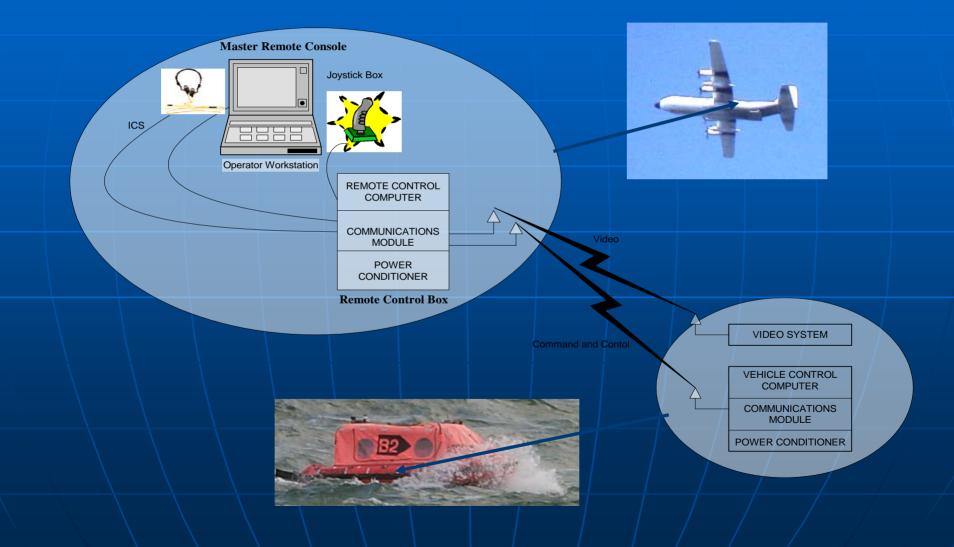
Copyright 2008

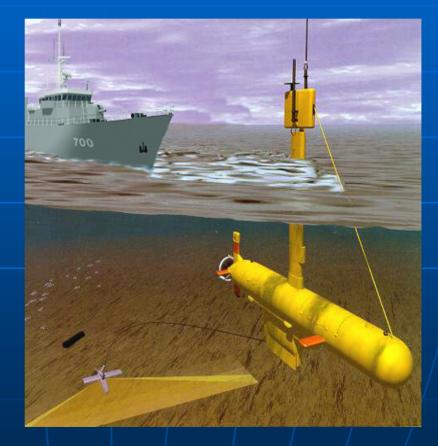
A Diversity of Mobile Platforms

Strategy- Re-use existing, proven technologies

- Integrate them into modular mobile platforms
- Configured to fit specified mission requirements.

All with commonality in the control system.





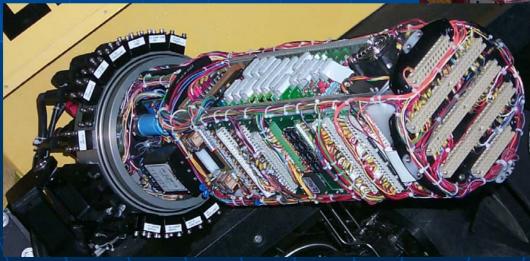
USV Command & Control

Electrical / Mechanical Interfaces

- Sensors
- Actuators
- Power Distribution
- Communications

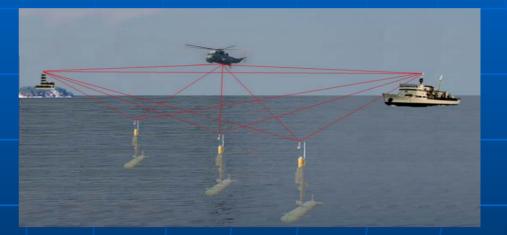
Operator Interfaces

- Joysticks
- Buttons/Lights
- Displays
- Video Systems
- Audio



Computers

- Form factor (eg. cPCI)
- Processor
- Input and Output Distribution
- Electrical Terminations & Signal Conditioning



Computers
 Form factor (eg. cPCI)
Processor
 Input and Output Distribution
 Electrical Terminations & Signal Conditioning
Software
 Operating System
Graphical User Interfaces
Control Software

Common Software Components

- Sensor Interfaces & I/O
- Positioning & Navigation
- Autofunctions Autoheading, Cruise, Stationkeeping
- Waypoint & Route Following
- Mission Planner & Scripts
- Communications & Telemetry
- Multi-vehicle Operations
- Transfer of Control
- Operator Interface

AUV Payload Integrations

- Loran C Navigation
- Elac Single Beam Echo Sounder (2)
- Syledis Positioning system
- NRL Custom Payload
- Ametek Straza DVL
- Robertson SKR 80 series Gyrocompass (2)
- Mesotech 1007 Obstacle Avoidance Sonar
- Oceano Long Baseline System
- Collins AN/ARC 182 Data Radio
- Klein 595 Side Scan Sonar
- Metratek Forward Looking Sonar
- Nautronix SBL Positioning System
- UV High Bandwidth Acoustic Comms
- Polarfix Laser Positioning System
- Simrad EM950 and 1000 Multibeam Echosounder (2)
- DRDC Motion Recording Pack (2)
- Simrad 992 Sidescan Sonar
- DataRadio 450KHz modem
- Novatech RF Beacon
- Novatech Emergency Strobe
- ORE Trackpoint II USBL
- ORE LXT USBL
- Honeywell 726 MAPS INU
- EDO Western 3050 DVL
- FCT 60 and 100 KWh fuel cell (2)
- Fibre-optic cable integrations (3)
- ORE Homing System
- Datasonics Communications and Pos'n Systems (2)
- Watson AHRS various models

- Seabird SBE Conductivity, Temperature Depth (3)
- Imagenex Multibeam (Delta T)
- AN/AQS 14 Sidescan Sonar
- DRDC experimental Klein Sidescan Sonar
- Reson 8101 Multibeam Echosounder
- C-Span High Bandwidth Data Radio
- Klein 5500 Multibeam Sidescan Sonar
- Rockwell Collins Quartz Rate C-Migits INU
- RDI DVL and ADCP (3)
- AMS Mass Spectrometer
- AMS Conductivity, Temperature Depth
- GPS various including Thales, Motorola, SOS
- IxSea PHINS INU (2)
- Kongsberg Mesotech 1007 Altimeter (3)
- Kearfott 6053 SEADeVil INU
- Sercel Orca MATS 200 Acoustic Telemetry
- Datalinc RF modem 900 and 2400 MHz (3)
- Video Cameras (2)
- Wilan RF data Modems 3.5 and 5.8 GHz (2)
- Kongsberg Simrad EM 2000 Multibeam Echosounder
- LinkQuest UWM series Acoustic Telemetry (2)
- Kongsberg Simrad EK60 Fish Stock sonar
- NAL Iridium modem
- Reson 7125 Multibeam Echosounder
- IxSea Posodonia LBL\USBL
- Fluorometer
- DSTL custom payload
- Motorola RF data modem
- IxSea Synthetic Aperture Sonar

Software Development Costs \$\$\$

So

- 1. New software development must be minimized
- 2. Existing software must be leveraged

How?

- 1. Systems approach
- 2. Open Architecture
- 3. Code reuse by modular design

System Design Approach

- ISE takes a "Systems" approach for integrated development of Hardware and Software.
- Project teams are formed including "Software Engineer" in overall design.
- Thus, software impact can be minimized in overall design (or traded-off)

Reduce-Reuse-Recycle

- New development reduced by systems design approach
- Software reused by leveraging previously proven, documented, tested, components and utilities
- New project development is implemented separately

... and then **recycled** back when proven.

Control System Development Strategy

<u>Common Control System</u> - ISE has developed a control system with a modular open architecture that is common to ISE products. The control system for any project is implemented by selecting re-usable components from a library and configuring them to fit the mission requirements.

<u>Graphical User Interface</u> – Configured from modular graphical widgets and standardized hardware. This simplifies production, troubleshooting, and training.

ISE's proven capability is attributed to our robust, flexible, adaptable control software.

Open Architecture Software

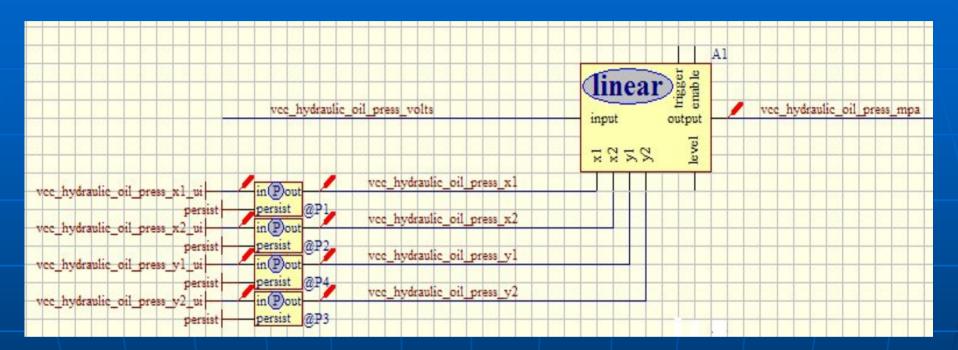
ACE Professional Software Development Kit

- 15 years development and field validation.
- Mature reusable software reduces project risks in technical, budgetary and scheduling aspects.
- Code, documentation and processes are well established.

ISE's Modular Open Architecture Software

- facilitates complex integrations
- common interfaces and protocols for interoperability
- rapid GUI prototyping and modifications
- adjust vehicle behavior

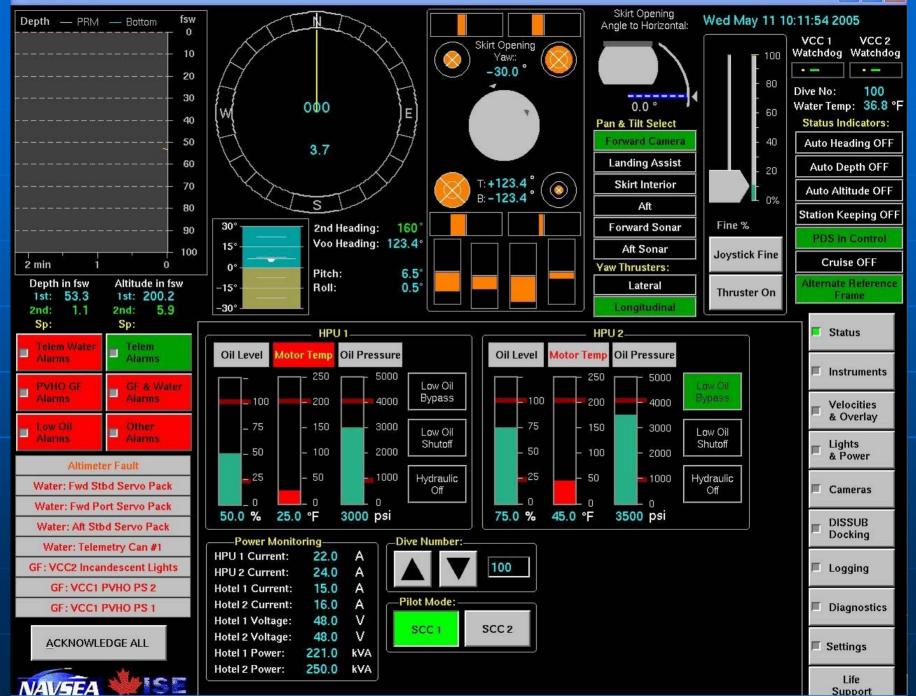
What is ACE ?

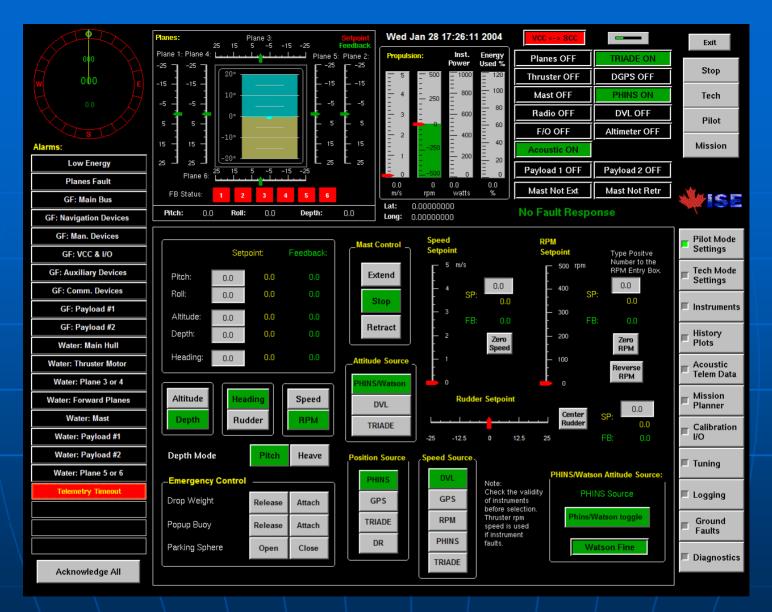

It is ISE's in house "Automated Control Engine", consisting of:

- Libraries of Components, encapsulated in C++ class which export functionality via common API
- Components which execute when triggered by an action, and produce event data output
- Components are linked at runtime, by "events", in a configuration that is produced graphically.

Graphical Control System

- ACE is configured in "Electrical Schematic" format
- Component icons are placed, and connected to graphically represent control data flow
- Graphical layout aids design and understanding leading to fewer errors
- Runtime configuration also applies to GUI's

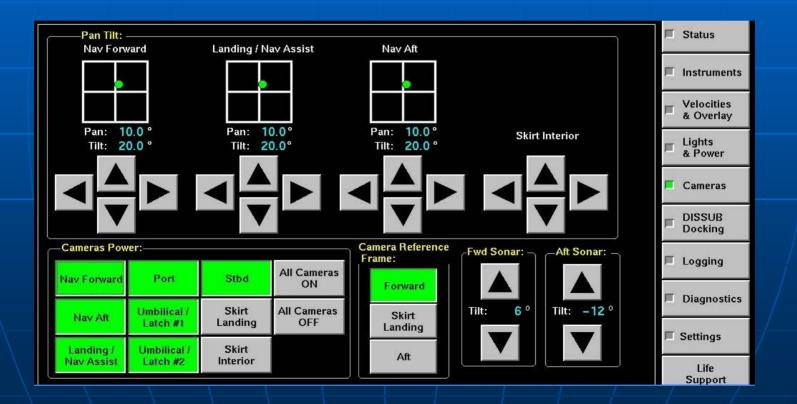

ACE Configuration



Example, "Linear Conversion"

Input is in units Volts Output is in units mpa Scaling parameters can be changed online 🕷 Phindows

_ **ð** X



User can modify the appearance and functionality

Graphical "Widgets"

Code reuse extends to GUI's by standardized Widget, design, interface and export in ACE SDK

Diagnostics and Settings

Can be integrated into the GUI

Other Settings		J 1 Oil evel		J 1 Oil Camera Nav Fwd Camera Nav F essure Pan Degree Tilt Degree			d Sonar Fwd Tilt Degree			Status		
Pilot's Chair	x1:	-25.0	x1:	-25.0	x1:	-25.0	x1:	-25.0	x1:	-25.0		Instruments
Duplicate	y1:	-25.0	y1:	-25.0	y1:	-25.0	y1:	-25.0	y1:	-25.0		10000 - 200
📕 Alarm Limits	x2:	25.0	x2:	25.0	x2:	25.0	x2:	-25.0	x2:	25.0		Velocities & Overlay
	y2:	25.0	y2:	25.0	y2:	25.0	y2:	25.0	y2:	25.0		a Overlay
■ Gains & Other Parameters	Raw Volts:		Raw Volts:		Raw Volts:		Raw Volts:		Raw Volts:			Lights
	0-10-10	20,2	0-11	20.2	0-11	20.2	Q - 10	20.2	Calib	20.2 rotodi	and the second	& Power
Joystick Calibration	Calibrated: 50.0		Calibr	ated: 3000.0	Calibra	ated: 10.0	Calibr	20.0	Salipi	5.7		Cameras
PDS Calibration	Ts Upper Rotate Pos.		Ts Lower Rotate Pos.		HPU 1 Electric Motor Temp.		VCC1 Can					212212
	x1:	-25.0	x1:	-25.0	x1:	-25.0	38	emp. -25.0				DISSUB Docking
_ SCC1	253.645	-25.0		-25.0	268232	-25.0	x1:	-25.0			-	
Calibraton	y1: x2:	25.0	y1: x2:	25.0	y1: x2:	25.0	y1: x2:	25.0				Logging
8000	ν2:	25.0	y2:	25.0	v2:	25.0	ν2:	25.0				
Calibraton					• 0 10 C							Diagnostics
	Raw V	20.2	Raw V	20.2	Raw V	20.2	Raw ∖	20.2			and the second	Shighten
Calibraton	Calibrated:				Calibra	Calibrated:		Calibrated: 20.2				Settings
Calibraton												Life Support

Diagnostics & Troubleshooting

Generic "Diagnostic List" for real-time diagnostics and system tuning

	VCC	90
<u>F</u> ile <u>H</u> elp		
hmi_lst2.txt		Exit
 Diagnostic_List common scc scc_auto scc_cam scc_capth scc_light scc_light scc_manip5f scc_subphone scc_vcc scc_vca scc_wa sim telem vcc 	scc_compass_cal_cmd 0 scc_compass_cal_interlock_cmd 0 scc_compass_power 1 scc_compass_ship_heading_deg 0.00000000000000000 scc_compass_turnscount_reset 0 scc_compass_variation_decrement_cmd 0 scc_compass_variation_increment_cmd 0 <pre> Edit Event Value Event Name: Scc_compass_power Value: 1 OK Cancel Cancel Cancel Cancel Scc_compass_cancel compass_cancel compass_ca</pre>	

Software Development Process

Document Control

standardized authoring, review, approval and distribution

Software Configuration Management

- All software under Revision Control System
- Change Request, Approval, Implementation & Testing process in place
- Coding Standards
- Peer reviews, catch faults early!

Summary

- ACE SDK is a software toolbox of tested components and configurations for a variety of applications.
- System similarities result in field proven software, documented and controlled.
- Capability is demonstrated.
- Development process reduces cost and risk of new software.

THE END

info@ise.bc.ca

www.ise.bc.ca